Appendix B2

Protocol for the COS Cell Binding Assay

(Provided by Dr. Elizabeth M. Wilson, Departments of Pediatrics and of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA) [This page intentionally left blank]

COS CELL BINDING ASSAY

Revised 2-06-02

1. Day 1- Monday

Plate 400,000 COS-1 cells/well of 6 well plate in 3 ml 10% bovine calf serum, DMEM-H/20 mM Hepes, glutamine, pen/strep (use stock of 2 M Hepes, pH 7.2, sterile filter)

(200,000 cells/12 well plate with 2 ml media for Scatchard analysis)

2. Day 2, prepare DNA

0.95 ml 1.08x TBS/well

- 2 μg AR DNA for 6 well comp binding (0.1-3 μg AR DNA for 12 well, 3 μg for GAL/VP vectors)
- 0.11 ml DEAE-dextran (250 mg/50 ml, autoclaved water, sterile filter made fresh)

Aspirate media, add 1 ml DNA solution, incubate 30 min at 37°C, aspirate media Add 3 ml/6 well of chloroquine-media (2 ml/12 well)

Prepare 5 mg/ml chloroquine in dH_2O fresh, sterile filter, add 1 ml of 5 mg/ml chloroquine to 100 ml 10% BCS/DMEM-H, 20 mM Hepes media

Incubate 3 h at 37°C, aspirate media

Glycerol shock 4 min at RT with 1 ml/6 well (or 12 well) of 15% glycerol in 10% BCS/DMEM-H

Aspirate, wash carefully 1X with 3 ml 1xTBS/6 well (2 ml/12 well)

Add 3 ml 10% BCS DMEM-H, incubate overnight in incubator

- 3. Day 3, leave in 10% serum containing media until next day
- 4. Day 4, aspirate (don't wash), set up tubes for binding assay:

Use 600 μ l/6 well of 5 nM [³H]R1881 labeling solution in serum free/phenol red free with or without 100 fold excess unlabeled R1881 for nonspecific binding control (400 μ l/12 well)

For calculations, prepare 0.625 ml/well for all h and h+c wells in serum-free, phenol red-free media

To make h + c, # h+c wells x 0.625 ml, take this volume from 5 nM hot solution, add cold R1881 so final is 100 fold higher (500 nM) unlabeled R1881 with 5 nM [3 H]R1881

Incubate 2 hr at 37°C (for Scatchard in 12 well, after 2 h labeling, take 100 µl for free counts)

For ligand dissociation experiment:

Add 10,000 fold excess of cold R1881 (50 µM final) in 0.1 ml serum free media (350 μM, 7X stock)

Amount to prepare: $100 \mu l \times total \# wells + 0.5 ml extra$

Spread plates out in incubator, start timer, incubate at 37°C for times indicated Remove at indicated time, aspirate using radioactive flask; wash carefully 1X with 3 ml PBS Aspirate to dry, harvest in 500 µl 1X sample buffer (2% SDS, 10% glycerol, 10 mM Tris, pH 6.8) for 6 or 12 well, add 4 ml scintillation fluid and count

2X TBS: pH to 7.4	500 ml 8.18 g NaCl 0.23 g KCl 0.147 g CaCl ₂ -2H ₂ O 0.1 g MgCl ₂ -6H ₂ O 0.128 g NaH ₂ PO ₄ -H ₂ O 3.03 g Tris	final conc 280 mM NaCl 6 mM KCl 2 mM CaCl ₂ 1 mM MgCl ₂ 1.8 mM NaH ₂ PO ₄ 50 mM Tris pH 7.4	4 liters 65.44 gr NaCl 1.84 g KCl 1.18 g CaCl ₂ -2H ₂ O 0.8 g MgCl ₂ -6H ₂ O 1.02 NaH ₂ PO ₄ -H ₂ O 24.24 g Tris	
1.08X TBS: pH to 7.4	500 ml 4.42 g NaCl 0.121 g KCl 0.08 g CaCl ₂ -2H ₂ 0 0.055 g MgCl ₂ -6H ₂ 0 0.067 g NaH ₂ PO ₄ -H ₂ 0 1.636 g Tris	4 liters 35.34 g NaCl 1.0 g KCl 0.64 g CaCl ₂ -2H ₂ 0 0.439 g MgCl ₂ -6H ₂ 0 0.54 g NaH ₂ PO ₄ -H ₂ 0 13.09 g Tris	final 51.2 mM NaCl 3.24 mM KCl 1.08 mM CaCl ₂ 0.54 mM MgCl ₂ 0.972 mM NaH ₂ PO ₄ 27 mM Tris pH 7.4	MW 58.44 74.56 147.02 203.3 137.99 121.14
or 270 ml 2XTBS + 230 ml $H_20 = 1.08xTBS$				